数字货币量化之仓位管理的实现 (上)
交易周期操作更新
handle_data
- handle_data() 函数在每个bar数据交易周期的结束时刻运行
- 可以使用当前交易周期的close数据,之前我们都是用的前三天的数据,现在只需要两天,因为可以拿到当天的收盘价
- 此时交易的价格为 close 数据

基准策略
- 投资组合:BTC,ETH,LTC,EOS
- 复利/不复利方式
- 头寸规模确定:等额资金分配
- 结果:
- 策略收益: 119.238%
- 策略年化收益:70.949%
- 策略波动率:37.756%
- 夏普比率:1.622
- 最大回撤:25.636%
代码实战
dma_baisc_alg.py
"""
双均线基准策略
- 等额资金分配
"""
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from catalyst import run_algorithm
from catalyst.api import record, symbol, order_target, order
from logbook import Logger
# 需要先加载数据
# catalyst ingest-exchange -x binance -i btc_usdt -f daily
# catalyst ingest-exchange -x binance -i eth_usdt -f daily
# catalyst ingest-exchange -x binance -i ltc_usdt -f daily
# catalyst ingest-exchange -x binance -i eos_usdt -f daily
NAMESPACE = 'dma_basic'
log = Logger(NAMESPACE)
SHORT_WIN = 5 # 短周期窗口
LONG_WIN = 25 # 长周期窗口
def get_available_cash(context, use_compound_interest=False):
"""
获取当前可用资金
use_compound_interest: 是否使用复利
"""
if use_compound_interest:
# 使用复利
available_cash = context.portfolio.cash
else:
available_cash = min(context.portfolio.starting_cash, context.portfolio.cash)
return available_cash
def get_risk_indices(perf):
"""
计算风险指标,包括:
1. 策略收益
2. 策略年化收益
3. 策略波动率
4. 夏普比率
5. 最大回撤
"""
# 策略执行天数
n = len(perf)
# 1. 策略收益
total_returns = perf.iloc[-1]['algorithm_period_return']
# 2. 策略年化收益
total_ann_returns = (1 + total_returns) ** (250 / n) - 1
# 3. 策略波动率(catalyst框架已经帮我们计算出来了)
algo_volatility = perf.iloc[-1]['algo_volatility']
# 4. 夏普比率
sharpe = perf.iloc[-1]['sharpe']
# 5. 最大回撤
max_drawdown = np.abs(perf.iloc[-1]['max_drawdown'])
return total_returns, total_ann_returns, algo_volatility, sharpe, max_drawdown
def initialize(context):
"""
初始化
"""
log.info('策略初始化')
context.i = 0 # 经历过的交易周期
# 设置加密货币池
context.asset_pool = [symbol('btc_usdt'),
symbol('eth_usdt'),
symbol('ltc_usdt'),
symbol('eos_usdt')]
context.set_commission(maker=0.001, taker=0.001) # 设置手续费
context.set_slippage(slippage=0.001) # 设置滑点
def handle_data(context, data):
"""
在每个交易周期上运行的策略
"""
context.i += 1 # 记录交易周期,因为可以拿到当天的收盘价,所以,这里加1,而不是之前的加2了
if context.i < LONG_WIN + 1:
# 如果交易周期过短,无法计算均线,则跳过循环
log.warning('交易周期过短,无法计算指标')
return
# 获取当前周期内有效的加密货币
context.available_asset_pool = [asset
for asset in context.asset_pool
if asset.start_date <= data.current_dt]
context.up_cross_signaled = set() # 初始化金叉的交易对集合
context.down_cross_signaled = set() # 初始化死叉的交易对集合
for asset in context.available_asset_pool:
# 遍历每一个加密货币对
# 获得历史价格
hitory_data = data.history(asset,
'close',
bar_count=LONG_WIN + 1,
frequency='1D',
)
if len(hitory_data) >= LONG_WIN + 1:
# 保证新的货币有足够的时间计算均线
# 计算双均线
short_avgs = hitory_data.rolling(window=SHORT_WIN).mean()
long_avgs = hitory_data.rolling(window=LONG_WIN).mean()
# 双均线策略
# 短期均线上穿长期均线,短期前一天小于长期,并且 当天短期大于长期,则为金叉
if (short_avgs[-2] < long_avgs[-2]) and (short_avgs[-1] >= long_avgs[-1]):
# 形成金叉
context.up_cross_signaled.add(asset)
# 短期均线下穿长期均线
if (short_avgs[-2] > long_avgs[-2]) and (short_avgs[-1] <= long_avgs[-1]):
# 形成死叉
context.down_cross_signaled.add(asset)
# 卖出均线死叉信号的持仓交易对
for asset in context.portfolio.positions:
if asset in context.down_cross_signaled:
order_target(asset, 0)
# 买入均线金叉信号的持仓股
for asset in context.up_cross_signaled:
if asset not in context.portfolio.positions:
close_price = data.current(asset, 'close')
available_cash = get_available_cash(context)
if available_cash > 0:
# 如果有可用现金
# 每个交易对平均分配现金
cash_for_each_asset = available_cash / len(context.available_asset_pool)
amount_to_buy = cash_for_each_asset / close_price # 计算购买的数量
if amount_to_buy >= asset.min_trade_size:
# 购买的数量大于最小购买数量
order(asset, amount_to_buy)
# 持仓比例
pos_level = context.portfolio.positions_value / context.portfolio.portfolio_value
# 记录每个交易周期的现金
record(cash=context.portfolio.cash, pos_level=pos_level)
# 输出信息
log.info('日期:{},资产:{:.2f},持仓比例:{:.6f}%,持仓产品:{}'.format(
data.current_dt, context.portfolio.portfolio_value, pos_level * 100,
', '.join([asset.asset_name for asset in context.portfolio.positions]))
)
def analyze(context, perf):
# 保存交易记录
perf.to_csv('./perf_results/dma_basic_performance.csv')
# 获取交易所的计价货币
exchange = list(context.exchanges.values())[0]
quote_currency = exchange.quote_currency.upper()
# 图1:可视化资产值
ax1 = plt.subplot(311)
perf['portfolio_value'].plot(ax=ax1)
ax1.set_ylabel('Portfolio Value\n({})'.format(quote_currency))
start, end = ax1.get_ylim()
ax1.yaxis.set_ticks(np.arange(start, end, (end - start) / 5))
# 图2:可视化仓位
ax2 = plt.subplot(312)
perf['pos_level'].plot(ax=ax2)
ax2.set_ylabel('Position Level')
start, end = 0, 1
ax2.yaxis.set_ticks(np.arange(start, end, (end - start) / 5))
# 图3:可视化现金数量
ax3 = plt.subplot(313, sharex=ax1)
perf['cash'].plot(ax=ax3)
ax3.set_ylabel('Cash\n({})'.format(quote_currency))
start, end = ax3.get_ylim()
ax3.yaxis.set_ticks(np.arange(0, end, end / 5))
plt.tight_layout()
plt.show()
# 评价策略
total_returns, total_ann_returns, algo_volatility, sharpe, max_drawdown = get_risk_indices(perf)
log.info('策略收益: {:.3f}%, 策略年化收益: {:.3f}%, 策略波动率: {:.3f}%, 夏普比率: {:.3f}, 最大回撤: {:.3f}%'.format(
total_returns * 100, total_ann_returns * 100, algo_volatility * 100, sharpe, max_drawdown * 100
))
if __name__ == '__main__':
run_algorithm(
capital_base=100000,
data_frequency='daily',
initialize=initialize,
handle_data=handle_data,
analyze=analyze,
exchange_name='binance',
algo_namespace=NAMESPACE,
quote_currency='usdt',
start=pd.to_datetime('2019-02-01', utc=True),
end=pd.to_datetime('2019-12-22', utc=True)
)

结果打印:
[2019-12-23 15:13:58.068289] INFO: dma_basic: 日期:2019-05-11 23:59:00+00:00,资产:110325.41,持仓比例:24.913164%,持仓产品:ETH / USDT
[2019-12-23 15:13:58.085725] INFO: dma_basic: 日期:2019-05-12 23:59:00+00:00,资产:109982.83,持仓比例:43.141850%,持仓产品:ETH / USDT, LTC / USDT
[2019-12-23 15:13:58.108327] INFO: dma_basic: 日期:2019-05-13 23:59:00+00:00,资产:111648.70,持仓比例:58.511697%,持仓产品:ETH / USDT, LTC / USDT, EOS / USDT
[2019-12-23 15:13:58.128956] INFO: dma_basic: 日期:2019-05-14 23:59:00+00:00,资产:116988.33,持仓比例:60.405324%,持仓产品:ETH / USDT, LTC / USDT, EOS / USDT
[2019-12-23 15:13:58.150533] INFO: dma_basic: 日期:2019-05-15 23:59:00+00:00,资产:125528.28,持仓比例:63.099033%,持仓产品:ETH / USDT, LTC / USDT, EOS / USDT
.
.
.
[2019-12-23 15:13:58.933136] INFO: dma_basic: 日期:2019-06-22 23:59:00+00:00,资产:143255.38,持仓比例:71.138528%,持仓产品:LTC / USDT, BTC / USDT, ETH / USDT, EOS / USDT
[2019-12-23 15:13:58.955364] INFO: dma_basic: 日期:2019-06-23 23:59:00+00:00,资产:141999.41,持仓比例:70.883250%,持仓产品:LTC / USDT, BTC / USDT, ETH / USDT, EOS / USDT
[2019-12-23 15:13:58.976089] INFO: dma_basic: 日期:2019-06-24 23:59:00+00:00,资产:142209.20,持仓比例:70.926205%,持仓产品:LTC / USDT, BTC / USDT, ETH / USDT, EOS / USDT
[2019-12-23 15:13:58.998289] INFO: dma_basic: 日期:2019-06-25 23:59:00+00:00,资产:144850.17,持仓比例:71.456289%,持仓产品:LTC / USDT, BTC / USDT, ETH / USDT, EOS / USDT
[2019-12-23 15:13:59.021467] INFO: dma_basic: 日期:2019-06-26 23:59:00+00:00,资产:148310.38,持仓比例:72.122239%,持仓产品:LTC / USDT, BTC / USDT, ETH / USDT, EOS / USDT
[2019-12-23 15:13:59.043160] INFO: dma_basic: 日期:2019-06-27 23:59:00+00:00,资产:134755.19,持仓比例:69.317981%,持仓产品:LTC / USDT, BTC / USDT, ETH / USDT, EOS / USDT
[2019-12-23 15:13:59.066632] INFO: dma_basic: 日期:2019-06-28 23:59:00+00:00,资产:140203.28,持仓比例:70.510239%,持仓产品:LTC / USDT, BTC / USDT, ETH / USDT, EOS / USDT
[2019-12-23 15:13:59.089773] INFO: dma_basic: 日期:2019-06-29 23:59:00+00:00,资产:142700.00,持仓比例:48.635408%,持仓产品:BTC / USDT, ETH / USDT, EOS / USDT
[2019-12-23 15:13:59.110369] INFO: dma_basic: 日期:2019-06-30 23:59:00+00:00,资产:136816.77,持仓比例:37.958767%,持仓产品:BTC / USDT, ETH / USDT
[2019-12-23 15:13:59.135115] INFO: dma_basic: 日期:2019-07-01 23:59:00+00:00,资产:136320.93,持仓比例:37.733107%,持仓产品:BTC / USDT, ETH / USDT
...
[2019-12-23 15:14:01.913691] INFO: dma_basic: 日期:2019-11-15 23:59:00+00:00,资产:108507.63,持仓比例:47.196208%,持仓产品:EOS / USDT, LTC / USDT, ETH / USDT
[2019-12-23 15:14:01.932070] INFO: dma_basic: 日期:2019-11-16 23:59:00+00:00,资产:109138.60,持仓比例:47.501485%,持仓产品:EOS / USDT, LTC / USDT, ETH / USDT
[2019-12-23 15:14:01.952659] INFO: dma_basic: 日期:2019-11-17 23:59:00+00:00,资产:109637.98,持仓比例:47.740609%,持仓产品:EOS / USDT, LTC / USDT, ETH / USDT
[2019-12-23 15:14:01.979233] INFO: dma_basic: 日期:2019-11-18 23:59:00+00:00,资产:106747.06,持仓比例:32.388759%,持仓产品:EOS / USDT, ETH / USDT
[2019-12-23 15:14:02.003355] INFO: dma_basic: 日期:2019-11-19 23:59:00+00:00,资产:106085.48,持仓比例:0.000000%,持仓产品:
风险指标:
[2019-12-23 15:14:02.614208] INFO: Performance: last close: 2019-12-22 23:59:00+00:00
[2019-12-23 15:38:27.865038] INFO: dma_basic: 策略收益: 6.085%, 策略年化收益: 4.649%, 策略波动率: 25.757%, 夏普比率: 0.307, 最大回撤: 28.471%
为者常成,行者常至
自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)